Impact of Habitat-Specific GPS Positional Error on Detection of Movement Scales by First-Passage Time Analysis
نویسندگان
چکیده
Advances in animal tracking technologies have reduced but not eliminated positional error. While aware of such inherent error, scientists often proceed with analyses that assume exact locations. The results of such analyses then represent one realization in a distribution of possible outcomes. Evaluating results within the context of that distribution can strengthen or weaken our confidence in conclusions drawn from the analysis in question. We evaluated the habitat-specific positional error of stationary GPS collars placed under a range of vegetation conditions that produced a gradient of canopy cover. We explored how variation of positional error in different vegetation cover types affects a researcher's ability to discern scales of movement in analyses of first-passage time for white-tailed deer (Odocoileus virginianus). We placed 11 GPS collars in 4 different vegetative canopy cover types classified as the proportion of cover above the collar (0-25%, 26-50%, 51-75%, and 76-100%). We simulated the effect of positional error on individual movement paths using cover-specific error distributions at each location. The different cover classes did not introduce any directional bias in positional observations (1 m≤mean≤6.51 m, 0.24≤p≤0.47), but the standard deviation of positional error of fixes increased significantly with increasing canopy cover class for the 0-25%, 26-50%, 51-75% classes (SD = 2.18 m, 3.07 m, and 4.61 m, respectively) and then leveled off in the 76-100% cover class (SD = 4.43 m). We then added cover-specific positional errors to individual deer movement paths and conducted first-passage time analyses on the noisy and original paths. First-passage time analyses were robust to habitat-specific error in a forest-agriculture landscape. For deer in a fragmented forest-agriculture environment, and species that move across similar geographic extents, we suggest that first-passage time analysis is robust with regard to positional errors.
منابع مشابه
Detection and Modeling of Medium-Scale Travelling Ionospheric Disturbances in Iran Region
Ionosphere layer variations are divided into regular and irregular. Regular changes can be considered as daily changes, changes depending on latitude and changes due to solar activity. Travelling Ionospheric Disturbances (TID) is one of the irregular changes of ionosphere which categorized in small, medium and large scales. Medium-scale Travelling Ionospheric Disturbance (MSTID) which are propa...
متن کاملCopyright by the Ecological Society of America MEASUREMENT ERROR CAUSES SCALE-DEPENDENT THRESHOLD EROSION OF BIOLOGICAL SIGNALS IN ANIMAL MOVEMENT DATA
Recent advances in telemetry technology have created a wealth of tracking data available for many animal species moving over spatial scales from tens of meters to tens of thousands of kilometers. Increasingly, such data sets are being used for quantitative movement analyses aimed at extracting fundamental biological signals such as optimal searching behavior and scale-dependent foraging decisio...
متن کاملGPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor
Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...
متن کاملCovariance Analysis of a vector tracking GPS receiver based on MMSE multiuser Detection
In high dynamic conditions, using vector tracking loops instead of scalar tracking loops in GPS receivers is proved as an efficient method to compensate the performance. The Minimum Mean Squared Error detector as a multiuser detector is applied in the vector tracking loop for more reliability and efficiency. The Kalman filter does the two tasks of tracking and extracting the navigation data aft...
متن کاملIndividual and Temporal Variation in Habitat Association of an Alien Carnivore at Its Invasion Front
Gathering information on how invasive species utilize the habitat is important, in order to better aim actions to reduce their negative impact. We studied habitat use and selection of 55 GPS-marked raccoon dogs (30 males, 25 females) at their invasion front in Northern Sweden, with particular focus on differences between males and females, between movement states, and between seasons and times ...
متن کامل